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Abstract—Network traffic monitoring is a core element
in network operations and management for various pur-
poses such as anomaly detection, change detection, and
fault/failure detection. In this paper, we introduce a new
approach to online monitoring using a pattern-based rep-
resentation of the network traffic. Unlike the past online
techniques limited to a single variable to summarize
(e.g., sketch), the focus of this study is on capturing
the network state from the multivariate attributes under
consideration. To this end, we employ clustering with its
benefit of the aggregation of multidimensional variables.
The clustered result represents the state of the network
with regard to the monitored variables, which can also be
compared with the previously observed patterns visually
and quantitatively. We demonstrate the proposed method
with two popular use cases, one for estimating state
changes and the other for identifying anomalous states,
to confirm its feasibility.

1. Introduction

Monitoring network traffic is an integral part in
network operations and management. The basic re-
quirement for network monitoring is to effectively
capture the traffic dynamics in a timely manner. For
example, some anomalies are the indication of perfor-
mance bottlenecks with a huge number of simultaneous
connections, which may be caused by several reasons
such as flash crowds, denial of service attacks, or
network component failures. The monitored results are
then used for reconfiguring the network to optimize
performance or to reinforce security with the historical
information.

A crucial challenge for traffic monitoring is the
exponential increase of the volume of data [1], [4].
This should be more critical to online monitoring with
a large number of incoming/outgoing packets to be
processed within a time interval. For example, it can be
over tens of millions of packets per second for a single
10 Gbps link. For this reason, the in-depth analysis
(e.g., on a per-flow basis) would not be feasible for
online monitoring, particularly in a large-scale network
(e.g., ISP or enterprise networks). In response to this,
data streaming computation has been widely studied
to provide a summary of network traffic within a time
interval. For instance, sketch is a statistical summary
technique based on counting with hashing to analyze
the network traffic [10], [12], [17]. While decent for

streaming computation without keeping extravagant
per-flow data, a sketch is limited to give the statistics
for a single traffic variable. The probabilistic density
information was also considered as the snapshot of
the network traffic [5]. However, this class of tech-
niques have the same problem and are restricted to
one dimensional variable to analyze. As a result, the
individual variables should be analyzed independently
with this scheme and how to combine them is left to
the administrator.

In this paper, we propose a new approach that offers
a high-level summary of the network traffic in regard
to the multivariate attributes under consideration. With
this approach, what the administrator sees is an abstract
pattern compiled from the traffic variables being moni-
tored, rather than observing a bunch of the independent
statistical information for the variables. By doing so,
the detection problems in traffic analysis (e.g., change
detection and anomaly detection) can be reduced to the
pattern comparison problem. For ease of exposition, we
use a term “network state” defined as the recap of the
network traffic with respect to the monitored variables.
The observed pattern represents the network state for
the associated time interval, and it can be compared
with the patterns in the archive to interpret the traffic
dynamics.

To represent the network state, we employ clus-
tering with its benefit of the aggregation of multi-
dimensional attributes. The clustered result is taken
as a pattern that tells the network state in question.
In addition, the connected cluster information (e.g.,
centroid positions) is used to compare patterns in a
quantitative manner. Note that the focus of this paper is
fundamentally different from the past studies employed
clustering for anomaly detection [8], [9], [11], [15], the
primary concern of which is to test individual data ele-
ments to classify. The main interest of our research is to
develop a method for the high-level online monitoring
without much details.

In this paper, we present the new approach along
with two use cases. The first use case is the estimation
of traffic changes between two different time intervals.
The network state is captured with a static number of
clusters, and the change is measured with the “degree
of changes” established based on the movement of the
centroid coordinates. The second use case we demon-



Figure 1. Clustering results over 16 consecutive hourly time windows on UNIBS data trace for flow duration on x- axis and average number
of packets in flow on y-axis, between 10AM on Sep. 30, 2009 and 2AM on Oct. 1, 2009. The number of clusters is set to 4, based on the
sum of squares in groups. Note that cluster IDs were randomly selected by the clustering tool.

strate is anomaly detection. In this use case, we assume
a flexible number of clusters for a time window, and the
abnormality of a cluster is estimated with the patterns
of attack clusters using a new measure of “likelihood”
constructed based on the centroid positions and the sum
of squares information. We will show the feasibility of
the proposed approach with the evaluation conducted
with public traffic traces.

2. Detection of Network State Changes

In this section, we present how the clustered pat-
terns can be employed to estimate the changes of
network states over time. In addition, we introduce a
new measure to gauge the change between two patterns
in a quantitative manner.

In this study, we use a 16-hour trace excerpted from
the UNIBS traffic trace, between 10AM on September
30, 2009 and 2AM on October 1, 2009 [6]. The data
set contains the information for network flows1 with
timing, and the ground-truth data with the associated
application for each connection is provided [16]. As
statistics, the average number of flows is 789 flows/hour
with a high degree of variance (min=20, max=7052).

The key proposed idea is to capture the network
state from the monitored variables and represent it
with a clustered pattern. We chose a conventional

1. A flow is identified with five tuples of source IP address, source
port number, destination IP address, destination port number, and
protocol in TCP/IP header

partitioning-based clustering (K-means) with its man-
ageable complexity and scalability. We set the number
of clusters to 4 (K = 4) for a single time window,
which is derived from the total sum of squares. We
basically considered two attributes, flow duration and
the number of packets per flow, to represent the state
of the network. Thus, the clustered pattern is compiled
with the above two traffic variables.

Figure 1 demonstrates the clustering results over
16 time windows (for 16 hours). Note that the cluster
IDs in the plots were randomly assigned. As shown
in the figure, the clustered results show the captured
network states, as well as the correlated patterns (∆ in
the figure will be explained shortly). For example, the
pattern for 10AM time window is quite different from
the one for 11AM time window. In contrast, the clus-
tered patterns from 11AM to 5PM are visually similar.
The three patterns for 8PM–10PM time windows are
also resembling, whereas the last three time windows
(11PM–1AM) have somewhat distinctive patterns.

To understand the traffic characteristics, we referred
to the composition of applications for each window
using the ground-truth information, shown in Figure 2.
From the two figures of 1 and 2, we see a strong cor-
relation. For example, the breakdown graph (Figure 2)
shows a high degree of similarity from 11AM to 5PM
and from 8PM to 10PM, respectively, which agrees
with similarity of the clustered patterns in Figure 1. On
the other hand, there is a high degree of difference in
the breakdown graph between 10AM and 11AM. Sim-
ilarly, we can see huge differences from the windows



of 11PM–1AM in Figure 2.
We see that the visual patterns are helpful to catch

the traffic dynamics. We next introduce a new measure
to quantitative estimate the difference between two
patterns.

Degree of changes (∆):
We introduce a new measure of “degree of changes”

(∆) that computes the difference of two patterns based
on the movement of the centroid positions of the clus-
ters. The basic intuition behind this is that the centroid
coordinates of two patterns would be close without a
heavy change if the network states in comparison are
tightly related. That is why we fixed the number of
clusters in this use case.

Suppose two time windows Wi and Wj , and the
associated cluster sets Ci = {c0i , c1i , ..., cki } and Cj =
{c0j , c1j , ..., ckj }, respectively, where k is the number of
clusters. Each cluster cyx has its centroid pyx. Without
knowing which cluster in Wi is mapped with one in
Wj , we find a set of pairs showing the minimal move.
Suppose a distance function D : Ci × Cj → R. Then
the problem is reduced to the assignment problem that
finds a bijection f : Ci → Cj with the minimal distance
function:

∆i,j =
∑
l∈Ci

D(l, f(l))

Hungarian algorithm is a well-known method for
this type of problem with O(k3) of the computational
complexity [13].

The ∆ values in Figure 1 represent the degree
of changes for two adjacent windows. From the ∆’s,
we see relatively small ∆’s from 11AM to 6PM and
from 8PM to 10PM (∆ ≤ 0.2). On the other hand, a
high degree of changes were observed for the adjacent
windows of (10AM, 11AM), (7PM, 8PM), (11PM,
12AM) and (12AM, 1AM) (∆ > 1.0). While strong
correlations are observed overall, the ∆(10PM, 11PM)
is the only exception with a small value (∆=0.1) al-
though the two windows are slightly different visually.
This indicates that the visual patterns and quantitative
measures are complementary and need to be considered
together to properly read the state of the network.

In summary, we observed a strong correlation be-
tween the clustered patterns and traffic composition that
confirms the feasibility of the proposed method. The
clustered patterns with the established measure would
be helpful to follow up the changes of network states
in both qualitative and quantitative manners.

3. Detection of Anomalous States

We next explore the effectiveness of the use of
clustered patterns for network anomaly detection. For
this use case, we consider the KDDCup 1999 data (“kd-
dcup.data 10 percent corrected”) [3] that has been
widely used in the anomaly detection study. A data
instance in the data set is a record of a single TCP
connection. The individual record also contains a label

Figure 2. Breakdown of applications for time windows (10AM–
1AM), compiled from the ground-truth data

for: a normal connection (”NORMAL”), a denial of
service attack (“DOS”), an unauthorized access from
a remote host (“R2L”), an unauthorized access to root
functions (“‘U2R”), and one employed for probing for
vulnerabilities (“Probe”). Since no timing information
is provided in the data set, we formed 16 partition
windows (“AA” – “AP”) serially from the beginning of
the data file, each of which contains 1,000 connections.

Two connection-related attributes were considered
in this case study: “src bytes” is the number of bytes
from the source to destination host and “dst bytes” is
the number of bytes from the destination to source.
Due to a high degree of skewness, we normalized the
data using a log function. For example, the summary of
src byte before normalizing is: 0 (min), 45 (1st quar-
tile), 520 (median), 3026 (mean), 1032 (3rd quartile),
693400000 (max); the summary after the normaliza-
tion is: 0.00 (min), 1.65 (1st quartile), 2.72 (median),
2.16 (mean), 3.01 (3rd quartile), and 8.84 (max). The
normalization makes sense since a 10-byte difference
is still critical to the connections in the 1st quartile
group (≤ 46 bytes), while it is insignificant to the
right-skewed connections such as one with 693,400,000
bytes (max).

As in the previous section, we employ the K-means
clustering to obtain the patterns. One difference is
that the number of clusters is dynamically determined
for each time window, while it was fixed in the first
use case that focuses on the degree of changes. The
number of clusters for a time window is estimated by
the optimum average silhouette width. The procedure
for clustering is as follows: For each window Wi,
the number of clusters (ki) is estimated with the data
instances in that window (Di and |Di| = 1,000). Then
the clustering algorithm is executed with an input of
ki to obtain a clustered pattern for Wi.

Figure 3 shows the clustering result and Table 1
provides a summary of the windows with labels. From
Table 1, we can see the windows from AH to AL have
a lot of DOS connections and three windows of AA,
AE and AP include some malicious connections. From
the figure, we can see noticeable similarity from many
clean windows (AB–AD, AF, AM–AO). The windows



Figure 3. Clustering results for dataset A: Each window contains 1,000 connections without overlapping. The K-means algorithms is used
and the number of clusters is estimated using the partitioning around medoids technique. The clusters in a thick circle are not found from a
cluster with normal connections only.

containing malicious events (AA, AE, AH–AL, and
AP) yield quite different shapes from the ones observed
in the clean windows. We can see that DOS makes a
specific pattern as shown in the windows of AH–AL.

Measuring likelihood of attacks:
We next present a metric of “likelihood” as a

quantitative tool for operators to test the potential of a
cluster as an attack class. One simple way to compare
two clusters would be to use the Euclidean distance
d(c1, c2), where ci is the centroid position of cluster
Ci in a multi-dimensional space; hence, d ∈ R and
d ≥ 0. Then we can assume a greater likelihood for
two clusters with a smaller distance. When d = 0, it
implies that the given clusters have the same centroid
position, and it will result in the greatest likelihood by
definition. While simple, the limitation of this method
is that none of d other than zero may not be adequately
interpreted to estimate the likelihood since it can be any
positive real number. For instance, it could be d = 1 or
d = 100; what do they mean in terms of the likelihood?
To establish a metric of the likelihood, we want to scale
it between zero (the least likely) and one (the most
likely) for the relative comparison.

We assume that a cluster is represented with two
parameters of <c, v>, where c is the centroid position
and v is a degree of variation in the cluster. A larger v
thus indicates that the elements in the cluster are further
dispersed in the space. Obtaining the centroid position

is straightforward with the K-means clustering as any
cluster has a centered point that minimizes the total
squared sum of the elements (“within-SS” or simply
wss). We utilize this parameter (wss) to characterize a
degree of variation, which is defined as v = wss

n , where
n is the number of elements in the cluster. With this
representation of a cluster, we establish two measures
for the likelihood defined as follows.

To define the first measure for the likelihood, we
borrow a concept of the statistical percentile in a Gaus-
sian distribution using p-value. The first measure (lpv)
is derived from the statistical percentile, by assuming
that the centroid position of the compared cluster as the
mean and the

√
v as the standard deviation. Suppose a

cluster C ′ =<c′, v′> and an attack cluster C =<c, v>,
and we would like to determine the likelihood of an
attack of C for C ′. The normal score (z-score) is
calculated by c−c′√

v
, where (c − c′) is the distance in

the Euclidean space. With the calculated normal score,
lpv is defined as the two-fold percentile using the asso-
ciated p-value. Note that we assumed v = min(v, 0.01)
to prevent the divide-by-zero error.

We next introduce the second measure ldr based
on the centroid positions and the radius of the cluster.
While lpv tests how close the center of the cluster is
to the attack cluster’s center, we consider a cluster as
a circle with a radius that is assumed equal to the
deviation of the cluster to establish ldr. Thus, cluster
C ′ =<c′, v′> is represented as a circle with the center



TABLE 1. TRAFFIC COMPOSITION & LIKELIHOODS OF ATTACKS

Window AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP
Normal 997 1000 1000 1000 998 1000 1000 792 0 0 0 511 1000 1000 1000 979

DOS 0 0 0 0 0 0 0 208 1000 1000 1000 489 0 0 0 20
U2R 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
R2L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Probe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4. Estimating likelihood based on the radius of the circle
(ldr): The blue circle is a cluster in question and the orange circle
is an attack cluster. In the left figure, the center of the attack cluster
is located within the blue circle and the likelihood is defined as the
relative distance compared to the radius of the blue circle (ldr =

1 − c−c′√
v′ ). The right figure show an example that the two circles

have no overlap since the center of the attack cluster is located outside
the blue circle (ldr = 0).

of c′ and the radius of r′ =
√
v′. To test the likelihood

of an attack represented with C =<c, v>, we compare
the two center points c and c′ with the radius r′. In the
comparison step, we compute lpv as follows:

ldr = max
(

1− c− c′√
v′
, 0
)

Figure 4 demonstrates two examples for ldr. In the
figure, the blue circle is a cluster in question, and the
orange circle is an attack cluster. As shown in the left
figure, we compute the likelihood by ldr = 1 − c−c′√

v′
,

since the center of the attack cluster is located within
the blue circle. In contrast, it is a zero (ldr = 0) in the
right figure as the two circles have no overlap, and the
center of the attack cluster is located outside the blue
circle.

To evaluate the defined measures, we precalculated
the patterns of the attack clusters for each attack class.
Using the patterns for individual attacks, we compute
likelihood using lpv and ldr for each window. As there
can be multiple clusters for a single attack type and
a window can have more than a single cluster, we
define a collective measure L that takes the max from
the set of the likelihood values. In detail, suppose a
window with a set of clusters {C ′1, C ′2, ..., C ′m}, and
an attack class (e.g., DOS) with another set of clusters
{C1, C2, ..., Cn}. Then the collective likelihood Lα for
attack type α is defined as:

Lα = max
i,j

l(C ′i, Cj), where 0 < i ≤ m and 0 < j ≤ n

TABLE 2. EVALUATION OF MEASURES (NUMBER OF CASES AND
PERCENTAGE)

L ≥ 0.5 L ≥ 0.7
Measure FP FN FP FN
Lpv (2D) 8 (50%) 3 (19%) 6 (38%) 4 (25%)
Ldr (2D) 1 (6%) 2 (13%) 0 (0%) 3 (19%)
Lpv (3D) 0 (0%) 4 (25%) 0 (0%) 5 (31%)
Ldr (3D) 0 (0%) 3 (19%) 0 (0%) 3 (19%)

The following illustrates the steps to evaluate like-
lihood:

1) If the window has no attack and none of L is
greater than or equal to the threshold, it is a
true negative (TN);

2) If the window has any types of attacks and any
of the associated L is greater than or equal to
the threshold, it is a true positive (TP);

3) If the window has any types of attacks and any
of the associated L is less than the threshold,
it is a false negative (FN);

4) Otherwise, it is a false positive (FP).

We examined with two threshold values, L ≥ 0.5
and L ≥ 0.7, using two attributes (src bytes and
dst bytes) and using three attributes (plus “connection
duration”). We refer to the former as “2D” and the
latter as “3D”. Table 2 shows the calculated FPs and
FNs. From the result, we can see using three features
reduces the number of the false decisions but with a
slight increase of false negatives. Also we can see that
Ldr works conservatively compared to Lpv.

4. Related work

With the heavy increase of traffic volumes, flow-
level traffic analysis would not be feasible for high-
speed network monitoring. To identify significant
changes or abnormality, the technique of sketch has
been extensively explored [10], [12], [17]. The sketch
basically makes use of a set of hash functions, and
the incoming data points are counted using the key
in question and the hash functions. For example, the
key would be 64 bits with source and destination IP
addresses. The statistics of the hashed results, such
as min, mean, quartile, can then be referenced for
the detection. Probabilistic models and samplings have
also been considered to summarize network traffic. The
work in [5] proposed a dynamic sampling technique to
reduce the size of streaming data based on the differ-
ence of the probabilistic density. The authors employed
the Kolmogorov-Smirnov test to measure the distance



of two summaries observed in different time intervals.
The past techniques are limited to capture a single
traffic variable only, and individual variables should be
analyzed separately. The key difference of the proposed
approach is the ability to capture the multivariate traf-
fic variables to provide a comprehensive view of the
network state.

A large body of studies employed clustering for
intrusion/anomaly detection [8], [9], [11], [15]. The
main focus of many of such studies was on identifying
intrusive events individually with a trained model con-
sisting of normal or anomalous behaviors. For instance,
the authors in [15] made an assumption that anoma-
lous events would be much smaller than the normal
events in quantity. The clustering information is then
used to test whether the input is anomalous or not,
based on this assumption. Similarly, a recent work [14]
proposed a method using co-clustering to improve the
detection performance. The main focus of our work
is fundamentally different from the past work and our
interest is rather to identify the network states deviated
from the normal, than detecting individual anomalous
connections based on in-depth analysis.

5. Conclusion

This paper proposes a new approach to the high-
level online network monitoring using clustered pat-
terns. The main goal of this study is to enable the
comprehensive analysis with multivariate attributes. We
demonstrated the feasibility of the proposed technique
with two popular network monitoring applications. For
the detection of state changes, we demonstrated our
analysis on the clustering results with the associated
groundtruth information, with the established measure
of “degree of changes”. We also presented the network
anomaly detection as the second use case. We defined
a new metric to estimate the likelihood of a cluster to
be an attack class and set up two measures with the
clustering information, one based on percentile in the
Gaussian distribution and the other based on the radius
of a cluster. The evaluation results support the effec-
tiveness of the new approach with the pattern-based
representation of network states and the quantitative
measures.

This research is in the initial stage and we showed
the potential of our approach in this paper. We plan
to further examine with other large-scale traffic traces,
such as MAWILab [7] and ESnet [2], to elaborate the
proposed method.
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